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A numerical method is described which is suitable for solving the equations governing 
the steady motion of a viscous fluid through a slightly curved tube of circular cross- 
section but which is also applicable to the solution of any problem governed by the 
steady two-dimensional Navier-Stokes equations in the plane polar co-ordinate 
system. The governing equations are approximated by a scheme which yields finite- 
difference equations which are of second-order accuracy with respect to the grid sizes 
but which have associated matrices which are diagonally dominant. This makes them 
generally more amenable to solution by iterative techniques than the approximations 
obtained using standard central differences, while preserving the same order of 
accuracy. 

The main object of the investigation is to  obtain numerical results for the problem 
of steady flow through a curved tube which corroborate previous numerical work 
on this problem in view of a recent paper (Van Dyke 1978) which tends to cast doubt 
on the accuracy of previous calculations a t  moderately high values of the Dean 
number; this is the appropriate Reynolds-number parameter in this problem. The 
present calculations tend to verify the accuracy of previous results for Dean numbers 
up to 5000, beyond which it is difficult to obtain accurate results. Calculated properties 
of the flow are compared with those obtained in previous numerical work, with the 
predictions of boundary-layer theory for large Dean numbers and with the predictions 
of Van Dyke (1978). 

1. Introduction 
In  a recent paper Dennis & Hudson (1978) described a method of solving the two- 

dimensional Navier-Stokes equations governing the motion of a viscous incom- 
pressible fluid in which a new type of approximation to the equation governing the 
transport of vorticity is made. In  effect the basis of the method is not new since it is 
derived by an expansion of a method first introduced by Dennis (1960), but the 
essentially new point considered by Dennis & Hudson was the formulation of an 
approximation to the vorticity transport equation in which the matrix associated with 
the finite-difference equations is diagonally dominant in the sense defined by Varga 
(1962, p. 23). The method is of second-order accuracy with respect to the grid sizes, i.e. 
of the same order of accuracy as the method of approximation by central differences 
but, as is well known, central-difference approximations to second-order differential 
equations do not necessarily have associated matrices which are diagonally dominant. 

Dennis & Hudson gave some illustrations of the convergence properties of iterative 
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methods of solution of the finite-difference equations in this particular formulation, 
but no comprehensive body of results was given in the study of a problem in which, 
as in the case to be considered here, there remain unresolved questions regarding the 
physical nature of the solution. In  the present paper the results of some elaborate 
calculations obtained by the method are presented in the case of steady flow through 
a slightly curved tube of circular cross-section, At the same time it will be shown that 
the basic method of approximation considered by Dennis & Hudson in a rectangular 
co-ordinate system can be extended to problems in at  least one other co-ordinate 
system, that is cylindrical co-ordinates. It is not completely obvious that the results 
given by Dennis & Hudson can be extended to other geometries or to other forms of 
the transport equations. 

The steady flow of a viscous fluid through a curved tube of circular cross-section 
has received considerable attention from the point of view of theoretical, numerical 
and experimental treatments. The motion is assumed to be maintained by a constant 
pressure gradient G and to be fully developed so that the velocity components depend 
only on the space co-ordinates of a typical cross-section of the tube. The relevant 
dynamical similarity parameter for the motion is the Dean number D = Ga3( 2a/L)t/pv, 
where a is the radius of the cross-section, L is the radius of the circle formed by the 
curved axis of the tube, p is the viscosity of the fluid and v the coefficient of kinematic 
viscosity. The earliest theoretical investigation of the problem was by Dean (1927, 
1928) who assumed that the coiling ratio a / L  was small and developed a perturbation 
solution of the equations of motion in powers of D giving the earlier terms, valid for 
small D, by exact analysis. Topakoglu (1967) retained higher-order terms in the ratio 
a l L  giving a double series in powers of a / L  and D. This series was extended to many 
more terms by Larrain & Bonilla (1970) by computer methods and the most recent 
work of this nature is the extension by Van Dyke (1978) of Dean's original series for 
the case a / L  = 0 to 24 terms using computerized analysis. Van Dyke gives results for 
the friction ratio yc/ys, the ratio of the resistance coefficients in a curved and straight 
tube under the same pressure gradient, as a power series in D4. By manipulation and 
re-structuring of this series in terms of a new variable 

8 = (K/576)'/((0.966 858 4)-l+ (K/576)'), 

where K = 0'116, a series for yc/ys is given which is claimed to be valid for all values 
of D .  

This result of Van Dyke (1978) is in conflict with all previous numerical solutions 
of the Navier-Stokes equations in the case a / L  = 0 for values of D greater than about 
1000, although it agrees well enough with reliable solutions for smaller values of D. 
Numerical solutions for a / L  = 0 have been given by McConalogue & Srivastava (1968), 
Truesdell & Adler (1970), Akiyama & Cheng (1971), Greenspan (1973), Austin & 
Seader (1973), Patankar, Pratap & Spalding (1974) and Collins & Dennis (1975). The 
papers of Truesdell & Adler and Austin & Seader also include the effect of finite a / L .  
Van Dyke's work is also in conflict with the predictions of boundary-layer theory as 
D -+ 00. Various investigations based on this theory have been given by Adler (1934), 
Barua (1963), Mori & Nakayama (1965) and Ito (1969). These theories do differ 
somewhat in detail but there is a remarkable consistency in the prediction of the 
tendency for y J y B  as D-tco. Further general studies have been made by Smith 
(1975, 1976). The major experimental investigations of the problem have been per- 
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pressure p and the velocity components are ( U ,  V ,  W )  in the directions of increase of 
(r', a, 0).  A stream function @(r', a) exists for the motion and if new variables are 
introduced by the equations 

r' = ar, U = vu/a, V = vv/a, W = v(L/2a3)tw, @ = v$, (1) 

u = r-la$/aa, v = -a$/&. (2) 

where v is the coefficient of kinematic viscosity then 

On the assumption that a / L  is small the Navier-Stokes equations of motion can be 
written as the three simultaneous equations 

VZ$ = -0, (3) 

where 

and D = Ga3(2a/L)l/pv. 
V2 = a2/ar2 + r-l a/& + r--2 P/aa2 

The velocity components must vanish at  the surface of the tube r = 1 and hence 

w = $ = a$/& = 0 when r = 1.  (6) 

The flow is symmetrical about a = 0 and a = n from which it follows that, 
for 0 < a < n, 

$(r ,  - a) = - $(r,  a) ,  w(r, -a)  = w(r, a),  Q(r ,  -a)  = - Q(r ,  a) (7) 

$ = Q = 0, aw/aa = 0 when a = 0,n. (8) 

and in particular that 

In  the numerical approach the equations (3)-(5) are solved subject to the boundary 
conditions by dividing the upper semi-circular region r < 1, 0 < a < n into a grid 
formed by lines of constant r and constant a. The equations are then approximated in 
terms of finite differences at  each grid point. The approximation to (3) is the customary 
central-difference approximation but to (4) and (5) a type of approximation which is 
in principle new is applied. It is based on a method given by Dennis & Hudson (1978) 
for the two-dimensional Navier-Stokes equations in rectangular co-ordinates. The 
method is such that individual forms of the governing equations in different co-ordinate 
systems must be considered separately. 

3. Finite-difference approximations 
We shall denote a typical grid point in the (r,  a) grid system by (r,, a,,) and number 

quantities at this point with subscript 0. Likewise quantities at the grid points 
(r,, + h, a,), (r,, a, + k), (r,  - h, a,) and (r,, a, - k) will be denoted by subscripts 1, 2, 3, 4 
according to the notation of Southwell. Here h is the grid size in the radial direction 
and k that in the a direction. The finite-difference method follows a derivation of 
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Dennis (1960). In  the case of equation (4) the method first proceeds by separating it 
into two equations which, after making use of (2), can be written 

a2w i a w  aw 
-+---u- = A(r ,a ) -D ,  
ar2 r ar ar 

a2w aw -- rv- = -r2A(r ,a) ,  
aa2 aa 

(9) 

where A(r,  a) is an unknown function. Along the line of constant a given by a = a. 
we put 

in (9), where 
w = F0-7 a,) exp { -f(., .,)I (11)  

(12) f(r,ao) = - g,; u ( z ,  a,) dz. 

The equation for F is, after simplification using (12), 

where all partial derivatives are to be evaluated at  a = ao. Similarly, along the line 
of constant r given by r = ro we put 

G = - ri A(ro, a) exp{g(r,, a)}, (16) 

where all partial derivatives are to be evaluated at r = ro. 
We now approximate each of the equations (13) and (16) in terms of central dif- 

ferences at the point (ro,ao), where both equations must be applicable. The value 
A(ro,ao) is common to both and may therefore be eliminated. After replacing the 
functions F and G in terms of w using ( 1  1 )  and (14) respectively, we obtain the finite- 
difference approximation 

- [2+%+ ah2(ug+~g) 1 w0+h2D = 0, (17) 

where h = h / k  and some simplification has occurred owing to the definitions of the 
velocity components in terms of 4. This approximation is second-order accurate in 
the sense that the truncation error on the right-hand side of (17) is of the same order 
as that which appears in the standard method of approximation of (4) by central 
differences, viz. the truncation error is O(h4) + O(h2k2). The approximation (17) holds at  
every grid point and thus defines a set of algebraic equations from which an approxima- 
tion to w can be obtained throughout the computational domain, assuming that 
approximations to the other functions which appear in (17) can be determined from 
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(3) and ( 5 ) .  The matrix associated with (17) is not necessarily diagonally dominant 
as it stands. Diagonal dominance is a desirable property and we can, following the 
method of Dennis & Hudson (1978), obtain a form of (17) which is diagonally dominant 
and in which there is no further loss of order of accuracy in the truncation error beyond 
that which is already present. 

If u(r, a) is expanded as a Taylor series in the direction of r a t  the point (r,, a,) and 
the result utilized in (12) we obtain 

from which fl and f 3  can be obtained in powers of h by putting r = ro + h and r = r, - h 
respectively. If we now expand the exponentials in the first two terms on the left-hand 
side of (1 7) in powers of their arguments and then in powers of h using the results for 
fl and f derived from (1 8) it is found that 

It can similarly be shown by determining 9, and g, as power series in k from (15) that 

w2 egz + w4 eg4 = [1+ &-&To w: - 2(av/8a),) k2 + O(k4)] (w2 + w,) 

- [&r0vok+O(k3)]  (w2-w,). (20) 

The truncation error terms already present in (17) are O(h4) + O(h2k2) and thus there 
is no objection to omitting O(h4) terms from (19) and O(k4) terms from (20 ) .  In making 
a further reduction it may be noted that w1 - w3 = O(h) ,  w2 - w4 = O ( k )  and further 
that 

w1 + w3 = ZW, + O(h2), W, + W, = ZW, + O(k2).  (21) 

With the aid of these relationships in (19) and (20 )  and the omission of error terms 
whose order is a t  least equal to the order of the error terms already inherent in equation 
(17) i t  is found, after some simplification arising from the use of ( Z ) ,  that (17) can 
finally be expressed as the approximation 

where 
c1 w1 +c2 w,+c,w, + C, w,- C, w,+ h2D = 0, (22) 

c1 = 1 +h/2r,-&u,h+u:h2/8, c2 = A2(l /rg-Bvok/ro+v:k2/8) ,  

c3 = 1-h/2r,+&u,h+u~h2/8, c, = h2(l /r:+Bwok/ro+w:k2/8) ,  1 (23 )  

The approximation ( 2 2 )  is applicable at  all grid points for which ro + 0. The smallest 
value of ro for which it is applied is ro = h and the smallest value of 1 - h/2r0  is thus 4. 
For ro 2 h it may then be demonstrated that c1 2 0, c3 2 0 for all values of u,h and 
also that c2 > 0, c, > 0 for all values of wo k. Since 

c, = 2 + 2 P / r i  + t h 2 ( U i  + 802). 

c,+c,+c,+c, = c, (24) 

also, it follows that the matrix associated with the set of equations ( 2 2 )  is diagonally 
dominant in the sense defined by Varga (1962, p. 2 3 ) .  Moreover, if we collect together 
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all the terms involving h2 in the first four terms of (22) and apply (21) it is found that 
with an error O(h4) + O(h2k2) they cancel the corresponding terms in h2 which appear in 
c, w, in (22) and we are left with the standard central-difference approximation to (4). 
Thus (22) is of the same order of accuracy with respect to the grid sizes as the approxi- 
mation to (4) by central differences but the actual error terms are obviously quite 
different. 

When r = 0 there is a set of grid points as a varies from a = 0 to a = n at which w 
has the same constant value which must be determined as part of the solution. The 
finite-difference equations (22) are not directly applicable here but we can follow the 
procedure adopted by Collins & Dennis (1975) and take rectangular co-ordinates 
( x ,  y )  with origin at  r = 0 and the axis of x along some particular line a = a,. Equation 
(4) then becomes 

a2w a2w a$aw a+aw -+---- +- - = - D .  
ax2 ay2 ay ax ax ay 

This equation may then be approximated directly by the method of Dennis & Hudson 
( I  978) to give the finite-difference equation 

(25) 

(1 - ahu, + Qh'ud) ~ ( h ,  a,) + ( I  - ahv, + ih'vi) w(h, BT+ a,) 
+ (1 + &huo + &h2ui) w(h, w - a,) + (1 + &hV, + Qh2vi) w(h, - 01,) 

- (4 + $h2(u; +v;)} w(O,aO) + h2D = 0. (26) 

Here (u,,~,) denote the radial and transverse components of velocity at  the point 
(0, a,) and the grid values of w in (26) refer to the polar co-ordinate system centred 
at r = 0. Equation (26) applies without modification if 0 < a, < an since all points 
referenced lie in the computational domain, but if in < a, < n then values of w at 
grid points outside the computational field must be replaced using w(h, -01) = w(h, a). 

The two sets of equations (22) and (26) may together be used to obtain approxima- 
tions to w a t  all grid points in the domain 0 < r < 1, 0 < a < n. At grid points on 
either a = 0 or a = n one of the grid values of w in (22) lies outside the domain and 
thus is dealt with by using the relation w2 = w4 which corresponds to the second 
condition of (7).  The necessary values of (u,, w,) in (23) and (26) are calculated from 
(2)  using the central-difference approximations 

uO = ($2 - $ 4 ) / 2 k r 0 ,  ' 0  = - ($1 - $3)/2h. (27) 

Since r, = 0 in the case of (26) we then replace kr, by h in (27). At grid points on a = 0 
and a = n use is made of the relation $2 = - $4 which follows from the first condition 
of (7).  This condition along with the condition $3 = is also used in calculating 
the values of (u,, w,) required in the set of equations (26) which hold on r = 0. This 
set holds at  all grid points on r = 0 and must yield a set of values of w(0,a)  which 
are equal since there is a unique value of w at  r = 0. This was confirmed to a high 
degree of accuracy in all the computations. 

Approximations to the equations (3) and (5) are needed at all grid points internal 
to the domain 0 < r < 1, 0 < a < w.  For the equation (3) the standard central- 
difference approximation 
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is used. For (5) a similar method to that described for (4) is used, with the right-hand 
side approximated by standard central-difference formulae. This gives the set of 
equations 

(29) 
I h 

YO 
c1 SZ, + c2 n2 + c3 Q, + c4 a4 - c, Q, - ihw, ((w, - w3) sin a, + - (w2 - w4) cos a, = 0, 

where the coefficients c ,  are those defined by (23). The boundary conditions for (28) 
are that $ must vanish on all boundaries of the semi-circular domain while for (29) 
$2 must vanish on r = 0, a = 0 and a = 7 ~ ,  but must be calculated at  grid points on 
r = 1 by making use of the conditions 9 = a#,/& = 0 at r = 1 given in (6) together 
with the finite-difference equations (28). 

There are several methods of carrying out this calculation. Collins & Dennis (1975) 
used the customary central-difference approximation to the condition a$/& = 0 at 
r = 1 which, in conjunction with (28) and the condition $ = 0 at r = 1 gives the 
approximation 

Q( 1, a) = - 2$( 1 - h, a p .  

The main objection to this formula, which is quite commonly used, is that the trunca- 
tion error on the right-hand side of (30) is O(h) whereas the truncation error in the 
remainder of the finite-difference equations used is of the second order. This loss of 
accuracy has implications when an attempt is made to extrapolate the properties of 
the computed solutions to zero grid size. It is therefore desirable to improve the 
accuracy of the calculation of $2( 1, a). This may be done by using a method which 
in principle is due to Woods (1954). The application of this method to problems 
similar to the present one was considered by Collins & Dennis (1976a, b ) .  The only 
difference in the present case is that the Laplacian operator in (3) is the operator in 
the polar co-ordinate system. A simple extension of the results given by Collins & 
Dennis (19764  gives the result 

(2 +h) Q(1, a) = - 6$(1- h, a) /h2-  Q(1 -h, a) (31) 

applicable to the present case. The error term on the right-hand side of (31) is now 
O(h2) which brings the calculation of the boundary condition for Q( 1, a) up to the 
same general order of accuracy inherent in the remainder of the finite-difference 
equations. 

4. Numerical procedures 
The use of (31) gives an improvement in the present method over that used by 

Collins & Dennis (1975). It is also unnecessary to employ the elaborate procedure used 
by Collins & Dennis (1975) of first obtaining a numerical solution for a given D using 
finite-difference equations of only first-order accuracy to approximate (4) and (5) and 
subsequently improving the accuracy by an iterative correction procedure. In the 
present formulation of the problem the sets of finite-difference equations (22), (26), 
(28) and (29) can be solved subject to their boundary conditions by an iterative 
procedure which converges satisfactorily for all D < 5000. The satisfactory convergence 
is due to the fact that each individual set of difference equations for w, $ and Q has, 
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when treated as a set of linear algebraic equations governing the appropriate function, 
an associated matrix which is diagonally dominant. Thus (Varga 1962) the successive 
over-relaxation procedure converges for each individual set for a well-defined range 
of the relaxation factor and this facilitates the convergence of the iterative procedure 
in which each set of equations is solved one after the other. In general, a solution of 
second-order accuracy can thus be obtained by the present method with comparable 
efficiency t o  that required to obtain a solution of first-order accuracy by means of 
upwind-downwind schemes such as that used by Collins & Dennis (1975) to obtain 
a first approximation. 

The successive over-relaxation procedure was employed for solving all the finite- 
difference equations. For the set of equations (22) this may be written 

w,jm+l) = (1  - W )  wJm' + w{(cl w1 + c2 w2 + c3 w3 + c4 w4 + h2D)/Co)(m), (32) 

where the superscripts denote successive iterates and w is the relaxation factor. All 
quantities in the last expression on the right-hand side of (32) are evahated from the 
most recent data. Similar equations correspond to (26), (28) and (29) and the solution 
procedure was carried out as follows. From an initial approximation to w, 4 and SZ 
at all grid points, including boundary points, a complete iteration over all grid points 
for which h < r < 1 - h, 0 < a < IT was performed using (32) followed by an iteration 
over all points for which r = 0, 0 < a < IT using the equation corresponding to (26). 
The approximation to w thus obtained was substituted in (29) and one complete 
iteration corresponding to this set of equations carried out for the internal grid points 
h < r < 1 - h, k < a < n - k. The boundary condition for s1 at r = 1 is kept fixed at 
the most recent distribution calculated from (31) during this iteration. The approxi- 
mation to s1 determined a t  internal grid points is then introduced into (28) and a 
complete iteration determines an approximation to 4. Then an application of (31) 
determines a new set of boundary values for R. This sequence of operations defines 
one major iteration. The major iterations are repeated until convergence, defined by 
the test 

where the summation extends to all grid points such that 0 < r < 1 ,  0 < a < IT. 
In practice two sums similar to the left-hand side of (33) were computed for s1 and 

q5 except that here the sum is extended only to grid points where the appropriate 
function is given to be non-zero. All three sums were tabulated from time to time 
during the iterative procedure and their rate of decrease observed. Several rep- 
resentative properties of the solution were tabulated along with these sums and their 
convergence to limits observed. In this way it was ensured that all quantities had 
converged to limits to a very high degree of accuracy. Solutions were carried out for 
D = 96, 500, 1000, 3000, 4000 and 5000. For D < 1000 it was possible to accelerate 
convergence by using values of w up to w = 1.3 in (32) and the similar equations 
corresponding to all the sets of difference equations. For D > 3000 it was not possible 
to take w > 1 for any of these sets, but w = 1 was always possible in solving the sets 
(28) and (29). For D = 4000 and 5000 it was found to be suitable to take w < 1 in 
(32) and in the similar procedure corresponding to (26). This decreases the forcing 
effect of the axial velocity component derived from (22) and (26) on the approximation 
to s1 obtained from the set of equations (29) and decreases the tendency of the whole 
sequence of iterative procedures to diverge. However, the convergence is extremely 

XI 1 - w(m+l)(r, a)/w(m)(r, a)I < 0.000 05, (33) 
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slow for D = 5000 and it would be very difficult to proceed to D > 5000. In  every 
case over the range of D considered i t  was possible to use (31) directly to calculate 
new boundary values for Q( 1, a) without any under-relaxation. This was not possible 
in the corresponding procedure used by Collins & Dennis (1975). 

The main extension of the present calculations beyond those of Collins & Dennis 
(1975) is that solutions could be obtained for three different grid structures for each 
value of D, namely 

(a )  h = 1/10, k = 77/10; ( b )  h = 1/20, k = 77/20; (c) h = 1/40, k = m/40. ( 3 4 )  

Collins & Dennis (1  975) were able to employ only the one pair of grid sizes h = 1/40, 
k = 77/72 for D 2 3500 and although a smaller grid size in the a direction was used 
the evidence of the calculated results presented in the following section is that this 
was not necessary. Since the ratio h / k  is kept constant in eachof the three grid structures 
given by (34) i t  is possible to apply h2 extrapolation to many of the physical properties 
computed from the solutions, particularly global properties such as the friction ratio 
yc/ys. This procedure gave extremely consistent results in the investigation of steady 
flow through a curved tube of triangular cross-section by Collins & Dennis (1976b). 
In the present case we can denote a given property, considered as a function of the 
grid structure only, by P(h, k )  and let PI, P2, P ,  be its values corresponding to the 
respective grids (a ) ,  (b ) ,  (c) in (34). Then the extrapolated value P12 between Pl and 
P2 is given by 

with a similar formula for the extrapolated value P23 between P2 and P,. On the 
assumption that the error proceeds in even powers of h and k it is then possible to 
obtain a further extrapolated value P12, from P12 and P2, in the form 

P12 = 5(4P2- Pl) (35) 

p123 = WG,- Pl2)/15. (36) 

These results will be used during the analysis of the major properties of the flow 
which follows. 

5. Calculated results 
The predictions of Van Dyke (1978) suggest that all previous numerical solutions 

in the case of indefinitely small a / L ,  which is the assumption made in the present 
work, are seriously in error. This conclusion is drawn from a comparison of one property 
only presented in Van Dyke's results in the same case a/L+ 0, namely the friction 
ratio. This can easily be calculated in terms of a Reynolds number K which it is 
customary to use in experimental measurements. This is defined by 

K = %W,(a/L)j/V, (37) 

where W, is the mean axial velocity of the flow through the tube. It is found to be 
given by (Collins & Dennis 1975) 

and it may then be shown that 



Xteady flow through a curved tube 469 

D Grid K Y h l l  h 
96 (4 1.6.56 1.025 0.995 

(b )  16.58 1.024 0.990 
(4 16.58 1.023 0.988 

500 (a)  64.86 1.363 6.161 
(b)  65.86 1.342 6-123 
( c )  66.14 1.336 6.105 

1000 (a) 109.8 1.609 9.483 
(6) 113-0 1.564 9.224 
(c) 114.0 1.551 9.185 

3000 (4 239.9 2.21 1 16.66 
( 6 )  251.6 2.108 15.79 
(4 255.6 2.075 15.76 

4000 (a )  291-1 2.430 19.03 
( b )  308.1 2.295 17.82 
(4 3 14.0 2.252 17.82 

5000 (a)  336-4 2.628 21.07 
( b )  360.0 2.455 19.48 
(4 368.1 2.401 19.49 

TABLE 1. Variation of flow properties with grid. 

W M  

23.32 
23.35 
23.35 

82.35 
83.39 
83.67 

135.7 
139.9 
141.1 

293.3 
3 10.5 
314.8 

352.0 
378.5 
384.4 

403.9 
440.1 
448.0 

WC 

22.41 
22.44 
22.44 

63.09 
63.63 
63.78 

96.76 
98.6 1 
99.16 

192.4 
200-3 
203.5 

230.5 
242.7 
246.8 

264.5 
282.0 
287.9 

The left-hand member of (39) is the reciprocal of the quantity analysed in detail by 
Van Dyke (1978). Both K and yc/ys depend only on D but, in the case of numerical 
solutions, estimates of them will vary with the grid used. In the first instance we can 
test the accuracy of the present computations by examining the variation of these 
and other properties with grid size. 

In table 1 we show calculated values of K, yc/ys and three other quantities for the 
three grids used for each value of D. The integral on the right of (38) was evaluated 
by the two-dimensional form of Simpson's rule. The quantity $Av, is the maximum 
value of $ over the cross-section whose position and magnitude was determined by the 
method described by Collins & Dennis (1976a). The quantity w',, is the maximum 
value of the dimensionless axial velocity component. This occurs on the axis of 
symmetry of the cross-section a = 0 and its position and magnitude were determined 
by several accurate methods of estimating the position of the zero of aw/ar on a! = 0, 
all of which agr,eed to good accuracy. Finally, the quantity w, is the value of the 
dimensionless axial velocity component at the centre of the cross-section. All these 
quantities appear to be approaching definite limits as the size of the grid is reduced. 
It is not possible to make a direct comparison with the results of Collins & Dennis 
(1975) for equivalent grids since Collins & Dennis used the grids: h = 1/10, k = ~ 1 1 8 ;  
h = 1/20, k = 7~136;  h = 1/40, k = n/72. However, there is a very clear consistency 
in the trend of both sets of calculations where comparison is possible. In particular, the 
values of K and yc/ys obtained using the grid h = 1/40, k = ~ / 4 0  in the present work 
are in almost exact agreement with those obtained by Collins & Dennis (1975) using 
the grid h = 1/40, k = ~ 1 7 2 .  Collins & Dennis (1975) did not publish results for w, 
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D 

96 
500 

1000 
2000 
3000 
3500 
4000 
5000 

K 

16.58 
65.70 

114.4 
199.2 

311.8 

414-7 

- 

- 

YCfYl 

1.024 
1-345 
1.545 
1-774 

1.985 

2.131 

- 

- 

K 

16.6 
66.1 

114.0 
190.9 

285.8 

369.5 

- 

- 

Van Dyke (1978) Collins & Dennis (1975) - & 

1.023 
1.337 
1.550 
1.852 

2.165 

2.392 

YolYa 

- 

- 

Present 

& 
K YCIYS 

16.58 1.023 
66-23 1.335 

114-3 1.546 

257.1 2.063 

316.2 2.237 
370.9 2.383 

- - 

- - 

TABLE 2. Comparison of results for the ReynolL, number ans friction ratio. 

but the values obtained by them using the grid h = 1/40, k = ~ / 7 2  were found to be 

D 96 500 1000 2000 3500 5000 

W C  22.44 63.70 99.00 154.7 224.7 287.2 

giving excellent comparison with the results for h = 1/40, k = ~ / 4 0  in table 1.  
More accurate estimates of K and yc/ys can be obtained by applying the h2-extra- 

polation formulae (35) and (36) to the results given in table 1.  The final estimates 
obtained from (36) are shown in table 2, where they are compared with the results of 
Van Dyke (1978, p. 140) and the calculations of Collins & Dennis (1975, p. 153) for 
the grid h = 1/40, k = n/72. These results of Collins & Dennis are probably more 
strictly comparable with the results in table 1 for the grid (c) than with the extrapolated 
results in table 2 but in any case there is little difference in all three sets of results 
and one must conclude that an error of the magnitude suggested by Van Dyke is out 
of the question. The method of h2 extrapolation is not strictly applicable to the results 
of Collins & Dennis (1975) because of their use of (30) for calculating a(1,ct) which 
introduces an error of order h into this part of the calculation rather than the error of 
order h2 introduced by use of (31).  Notwithstanding this it is of interest to note that 
if we apply h2 extrapolation to the results a t  D < 1000 for q5nf and uLV, in table 1 and 
compare the results with a similar h2 extrapolation of the results of Collins & Dennis 
(1975, p. 143) obtained using the somewhat different grid structures noted above, we 
obtain almost exact coincidence between the final extrapolated estimates derived 
from (36) for all D < 1000 in both cases. This gives yet another consistency check 
between two sets of results in which the truncation errors present in the majority of 
the approximating sets of finite-difference equations are different. 

The nature of the discrepancy between the results for yc/ys given by Collins & 
Dennis (1975) and Van Dyke (1978) as D increases can in essence be expressed by the 
fact that Collins & Dennis found that their results were consistent with the asymptotic 
expression 

yc/ys N 0.1028~1)+0.380 as D+co (40) 

~ c / ~ s  N 0.47136~a &S D+co. (41) 

whereas Van Dyke asserts from his results that 
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D D - h  D-*ye/ya D-*$, D - h M  D-*w, D*(t -d )  

96 0.791 0.2235 0.216 1.114 1.071 3.65 
500 1.051 0.1681 0-768 1.330 1.013 3.47 

1000 1.143 0.1546 0.917 1.415 0.993 3.68 
3000 1.236 0.1430 1.094 1.520 0.980 3.74 
4000 1.255 0- 1409 1.125 1.533 0.985 3.79 
5000 1.269 0.1394 1.142 1.541 0.992 3.85 

TABLE 3. Final properties of the flow obtained by h2 extrapolation. 

The leading term of the asymptotic formula (40) is consistent with that predicted by 
all of the existing boundary -layer theories. Despite variations in the individual 
versions of the boundary-layer approach to the problem, they all predict a variation 

yJyS - A K$ as D -+ co (42) 
of the form 

with somewhat different estimates of the constant A given as A = 0.1064, 0.09185, 
0.1080 and 0.1033 by Adler (1934), Barua (1963), Mori & Nakayama (1965) and Ito 
(1969) respectively. Collins & Dennis obtained the result (40) by making the assumption 

Dfy,/y, N u + bD-3 (43) 

as D+co and estimating the constants a and b graphically from a plot of D)y,/y, 
against D-9. This gave the values a = 8-12, b = - 16.7 and then some manipulation 
of (43) yielded (40). In  the case of the present results we have estimated a and b by 
fitting (43) to results obtained a t  successive pairs of values of D and observing the 
tendency of a and b as D increases. Calculated values of KD-* based on the extrapolated 
results of table 2 are given in table 3. Apart from a factor, these give the left-hand 
side of (43). They appear to be approaching a limit as D increases. The fitted values 
of a and b are also found to approach limits quite smoothly and the expression 

D*y,/y, N 8.19 - 1 7 . 4 0 3  (44) 

fits the results for D 2 1000 very accurately. The suggested asymptotic relationship 
between D and K for large D from the present results is 

D* - 0.831 KJ + 1.06 (45) 

yc/ys N 0.1015~4+0*388.  (46) 

and the corresponding result to (40) is 

The slight differences between the results (44) and (46) and the corresponding pre- 
dictions of Collins & Dennis (1975) are due to the use of the presumably more accurate 
data obtained by h2 extrapolation in the present work. 

On the basis of the prediction (41) Van Dyke (1978) has dismissed the structure of 
the solution as D --f co given by the various boundary-layer analyses as incorrect, 
although no suggestion as to the correct structure is made. The conventional boundary- 
layer models suggest that the boundary-layer thickness near the tube wall is pro- 
portional to D-) with q5 = O(Dt) ,  w = O(D3) and Q = O(D) in the boundary layer. In 
order to match the conditions in the boundary layer the axial velocity component in 
the inviscid core flow outside the boundary-layer region must also be O(D8). Although 
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any attempt to confirm this structure using the present numerical solutions must 
necessarily be viewed as tentative, there is certainly a suggestion of its validity. In 
table 3 we give some results for typical properties of the flow scaled according to the 
conventional boundary-layer theory. In  every case the results represent the final value 
obtained using (36) by h2 extrapolation from solutions obtained on the three grids 
given by (34). The quantities wil.l and wc correspond to those given in table 1 and 
d is the dimensionless distance of the location of w, from the centre of the tube. Thus 
the quantity D+( 1 - d )  gives a measure of the boundary-layer thickness at the outer 
bend of the tube in terms of a co-ordinate normal to the wall scaled in accordance 
with the conventional theory. 

It is evident that the results of table 3 are not inconsistent with the boundary-layer 
structure proposed by the theories. It is possible to attempt to estimate asymptotic 
formulae for these properties as D -+ co by representing each by an expression having 
the same form as the right-hand side of (43) and estimating the constants as the limits 
for increasing D of a process of fitting the expression to results obtained at successive 
pairs of values of D. In  every case this procedure shows some semblance of an approach 
to a limiting behaviour as D increases but in most cases this limit, if it exists, has not 
been reached a t  D = 5000. In  the case of the property D-gw, we can quote the possible 
limiting formula 

as D+co which fits the results for D 2 3000 almost exactly and is less than 4% 
in error at D = 1000. The most surprising behaviour in table 3 is that of D-*wc which 

D-Qw, N 1-645 - 1-78D-* (47) 
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D -D-%M - D-l ( ~ ) v - l , a ~ . D - l ( ~ )  D - l ~ ( 0 )  D-%(n) 

96 0.239 0.311 0.176 0.572 0.441 
500 0.550 0.664 0.181 0.691 0.308 

1000 0.619 0.775 0.158 0.722 0.267 
3000 0.663 1.033 0.121 0.812 0.21 1 
4000 0.682 1.036 0.1 14 0.817 0.199 
5000 0-698 1.026 0.110 0.818 0.190 

TABLE 4. Representative properties of the transverse and axial components 
of skin friction at the wall of the tube. 

r = l ,  a=n 

first falls to a minimum with increasing D and then starts to rise. It is unlikely that 
this behaviour is due to numerical error. The results of table 1 indicate a quite con- 
sistent tendency towards a limit for all D as the grid sizes h and k are reduced; and the 
h2-extrapolation process gives convincing results. We have already noted the excellent 
agreement for this property between the present results using the grid h = 1/40, 
k = n/40 and those of Collins & Dennis (1975) using the grid h = 1/40, k = ~ / 7 2 .  For 
these respective grids the smallest observed value of the property in question in the 
present calculations is D-fw, = 0.976 a t  D = 3000 rising to D-fw, = 0.985 a t  D = 5000, 
whereas Collins & Dennis find D-fw, = 0.975 for both D = 2000 and 3500 rising 
to D-fw, = 0.982 at D = 5000. Further confirmation has been obtained in independent 
calculations by Dennis & Ng (1980) using a method of series truncation in which the 
co-ordinate a is eliminated. A similar minimum of D-fw, is found of approximately 
the same magnitude but there is a marginally greater rise in D-fw, as D = 5000 is 
approached. 

The main properties of the flow given graphically by Collins & Dennis (1975) are 
confirmed to good accuracy in the present calculations and need not be described 
further. We shall, however, give some results for the distributions of the axial and 
transverse components of skin friction over the wall of the tube, which were not given 
in detail by Collins & Dennis. The dimensionless axial component of skin friction at  
the wall can be measured by the coefficient 

7(a) = - (8w/l)r)r=l. (48) 

In figure 2 we give results for log7 as a function of a over the range of D of the cal- 
culations. The derivative on the right-hand side of (48) was evaluated using sufficient 
terms of a series of backward differences of w based on r = 1. The similarity of the 
curves for D 3000 over the entire range of a is evident and the separation between 
the curves is quite consistent with the conventional boundary-layer notion that 
D-l7(a) tends to  become a function of a! alone over the wall of the tube as D increaes. 
Some precise numerical information for D-%(O) and D-%(n) is given in table 4. 
The dimensionless transverse component of skin friction a t  the wall is measured by 
Q(1, a) .  Distributions of D-lQ(1, a )  are shown in figure 3. The curve for D = 4000 has 
been omitted but it generally lies between those for D = 3000 and 5000 over the 
entire range of a. 

Some representative values of the axial and transverse components of skin friction 
at the wall are given in table 4. The quantity Q, is the value of Q with the greatest 
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" 
1 .o 0.8 0.6 0.4 0.2 0 

Qh 
FIGURE 3. Distribution of the transverse component of 

skin friction over the wall of the tube. 

numerical magnitude throughout the computational domain; this occurs on the wall 
of the tube. It was obtained from the solutions for each of the three grids (34) by 
locating the zero of (aCl/aa),_, and then applying an interpolation procedure. The 
results presented in table 4 for Q*,l are the final extrapolated values obtained from 
the values on the three grids using (36). The values of D-l(aQ/aa),=, a t  a = 0 and 
01 = m in table 4, which measure the slopes of the curves in figure 3 at the corresponding 
points, were also obtained by extrapolation from values on the three grids using (36). 
All three of the properties of the transverse component of skin friction given in table 4 
are not inconsistent with the tendency predicted by boundary-layer theory in that 
they should tend to  constants with increasing D. The slight fall in the magnitude of 
D-'(aR/aa),,, at  a = 0 as D increases from 4000 to 5000 is due to inadequacy of the 
extrapolation procedure for this particular quantity for large D. This fall does not 
take place in the magnitudes of the corresponding quantities obtained from the 
h = 1/40, k = m/40 grid but the extrapolation procedure is influenced by inaccurate 
values of (aCl/aa),=, at  a = 0 on the coarsest grid when D is large. 

Values of the axial component of skin friction at  a = 0 and a = 71 are given in table 4. 
Some care was taken in their evaluation since they provide useful reference quantities 
for comparison with other work on the problem. Three independent methods of 
calculating the derivative in (48) were used. In the first, as mentioned previously, 
a number of terms of a series of backward differences of w based on r = 1 was used. 
In  the second method the simplest central-difference approximation 

(aw/ar),=, = {w( 1 + h, a) - W (  1 - h, a ) } /2h  
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was used with the external value w( 1 + h,  a )  calculated from (22) with 
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ro = 1, uo = vo = 0. 

Finally, estimates of (aw/ar),,, a t  a = 0 and a = 7~ can be obtained by integrating 
(4) along the appropriate axis of symmetry from r = 0 t o r  = 1.  After suitable reduction 
this gives 

where the integral is evaluated along a = 0 or a = 7~ as the case may be. The integrand 
of the integral on the right-hand side of (49) is zero a t  r = 1 and hence the value of 
(aw/ar),,, is not required in calculating the integral when numerical integration is 
used. 

Values of ~ ( 0 )  and 7(n)  were obtained using the three methods for each of the three 
solutions for different h and k a t  each value of D and the convergence of the results 
with decreasing grid sizes was noted. I n  the case of 7(7r) estimates were obtained in 
all three methods giving values of D-l7(n) which never differed from those given in 
table 4 by more than one unit in the third decimal place. For ~ ( 0 )  there were small 
discrepancies in the three estimates for the higher values of D. It was found, however, 
that the estimates of ~ ( 0 )  obtained using the second of the above methods based on 
central differences were converging upwards with decreasing grid sizes for a given D 
while those obtained from (49), using central differences to approximate all derivatives 
in the integral on the right, were converging downwards. The results given in table 4 
represent an average of the corresponding two values obtained from the h = 1/40, 
k = n/40 solution. These are slightly lower a t  the higher values of D than the values 
given by Collins & Dennis (1975) who used only two terms of the backward-difference 
series of w at r = 1 for calculating (aW/ar),=,. More terms than this are necessary to 
give an accurate result. 

One further consistency check on the boundary-layer structure can be made. Smith 
(1975) has considered, amongst other features of the boundary-layer flow, the stagna- 
tion point solution near a = 0. From a knowledge of the axial velocity component 
a t  the edge of the boundary layer a t  a = 0 it is possible from Smith's numerical 
integration of the boundary-layer equations to  determine the axial component of skin 
friction a t  the wall. If we identify, on the boundary-layer scale, the axial velocity 
component at the edge of the boundary layer with the limit D - ~ W ,  = 1.645 as D+ co 
given by (47) then, from the details of Smith's solution it is found that the corres- 
ponding limiting axial skin friction component a t  the wall is D-%(O) = 0-819 from the 
boundary-layer solution. This value gives excellent corroboration of the limiting trend 
of the corresponding axial skin friction in table 4. 

6. Discussion 
On the basis of results for one property only, the friction ratio yc/ys, Van Dyke 

(1978) has cast doubt on the previous boundary-layer analyses of flow in a slightly 
curved tube of circular cross-section and also on previous numerical results for this 
flow for D > 1000. The analysis of the present computations given in the previous 
section indicates that  the results for yJyS are not only completely consistent in 
themselves but that  they are also consistent with the calculations of Collins & Dennis 
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(1975). Both sets of computations were carried out under the assumption that the 
coiling ratio a / L  = 0, which is the assumption made by Van Dyke, SO no explanation 
of any discrepancy in the results can be made on the basis of a difference in underlying 
assumptions. The calculations of Van Dyke (1978, p. 143) are not only in conflict 
for D > 1000 with those of Collins & Dennis (1975) but also with those of Truesdell 
& Adler (1970) and Austin & Seader (1973), both carried out €or the case a / L  = 0.01, 
and with the correlation of experimental results of Hasson (1955). The numerical 
results are in good agreement amongst themselves and also with the experimental 
correlation. In  face of the body of agreement and the confirmation provided by the 
present results obtained by means of somewhat different methods of approximation 
to (4) and (5) from those used in previous numerical work together with the subsequent 
use of h2 extrapolation, it must be concluded that the numerical work is not in error. 
In fact an error in yc/ys of the magnitude suggested by Van Dyke’s predictions for 
this quantity is considered to be out of the question. 

The present calculations are also consistent for other properties of the flow and 
they suggest strong evidence, as did the results of Collins & Dennis (1975), for the 
validity of some form of the conventional boundary-layer model as D+co even if 
some of the details remain to be settled. Van Dyke has criticized the previous numerical 
work on the grounds that the grid structures are too coarse at  the higher values of D 
with only a few points in the boundary layer. If we assume that the boundary-layer 
thickness is indeed proportional to D-+, as suggested by the results for D+( 1 - d )  in 
table 3, we can provide some further consistency checks on the calculated results for 
yc/ys which tend to refute Van Dyke’s criticism. For example, we would expect that 
the calculated result obtained using the grid h = 1/20, k = n/20 a t  D = 500 would be 
roughly of the same accuracy as the corresponding calculated r e d t  obtained using 
the grid h = 1/40, k = n/40 a t  D = 4000. We can test this hypothesis in relation to 
the calculated results for yc/ys given in table 1 in the following manner. 

We denote as before by P12, a value in table 2 at a given D obtained by h2 extrapola- 
tion from the corresponding values Pl, P, and P, of table 1. A relative error is then 
defined by 

If we apply this formula to the results for yc/ys at D = 500 we find El = 0.021 and 
E, = 0.006. On the basis of a boundary-layer thickness proportional to D-* these 
values may be expected to be comparable, respectively, to the values of E, and E3 
a t  D = 4000. The actual values at D = 4000 are E ,  = 0.026, E, = 0.007. Similarly at  
D = 1000 we find the values El = 0.041 and E, = 0.012 and it may be expected that 
the values of E, and E, a t  D = 5000 would be respectively somewhat smaller than 
these. In fact this is confirmed by the values E, = 0.030 and E, = 0.008 at D = 5000. 
The extrapolated value yJyS = 1.546 at D = 1000 in table 2 is virtually in exact 
agreement with the corresponding result of Van Dyke (1978). In view of the above 
comparisons it is inconceivable that the extrapolated value yc/ys = 2-383 a t  D = 5000 
in table 2 could be in error by more than 10 yo as is suggested by the calculations of 
Van Dyke (1978). 

It is difficult to speculate on reasons €or the discrepancy between the present results 
and those of Van Dyke (1978). It seems unlikely that Van Dyke’s calculations contain 
numerical errors in view of the agreement with the present results below D = 1000 
and also on account of the excellent check between the first 14 terms of his series with 

(50 )  En = l p n - p 1 2 3 l / p 1 2 3  (n = 2, 3). 
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those calculated by Larrain & Bonilla (1970). There could of course be errors in the 
manipulation process to which the 24 calculated terms of the perturbation series are 
ultimately subjected, although the numerous tests of the process which are applied 
seem to be satisfactory. One possible very tentative reason for the discrepancy could 
be that Van Dyke’s results represent a different solution to the problem from that 
given in the present paper. The recent work of Dennis & Ng (1980) indicates that 
non-uniqueness of solutions does appear to be possible in this problem as D increases 
and that it seems to start somewhere after D = 1000. In any case it would help to 
elucidate the discrepancy if Van Dyke’s approach were extended to calculate pro- 
perties of the flow other than simply the friction ratio. Such properties could then be 
compared with existing data, which might help toresolve the cause of the discrepancy. 

The present calculations were carried out on the CYBER 73 at the University of 
Western Ontario. The investigation was supported by a grant from the Natural 
Sciences and Engineering Research Council of Canada. The author would like to 
acknowledge correspondence and numerous helpful discussions with N. Riley, F. T. 
Smith, K. Stewartson and M. Van Dyke. 
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